On the formation of the porous structure in nanostructured a-Si coatings deposited by dc magnetron sputtering at oblique angles.

نویسندگان

  • V Godinho
  • P Moskovkin
  • R Álvarez
  • J Caballero-Hernández
  • R Schierholz
  • B Bera
  • J Demarche
  • A Palmero
  • A Fernández
  • S Lucas
چکیده

The formation of the porous structure in dc magnetron sputtered amorphous silicon thin films at low temperatures is studied when using helium and/or argon as the processing gas. In each case, a-Si thin films were simultaneously grown at two different locations in the reactor which led to the assembly of different porous structures. The set of four fabricated samples has been analyzed at the microstructural level to elucidate the characteristics of the porous structure under the different deposition conditions. With the help of a growth model, we conclude that the chemical nature of the sputter gas not only affects the sputtering mechanism of Si atoms from the target and their subsequent transport in the gaseous/plasma phase towards the film, but also the pore formation mechanism and dynamics. When Ar is used, pores emerge as a direct result of the shadowing processes of Si atoms, in agreement with Thornton's structure zone model. The introduction of He produces, in addition to the shadowing effects, a new process where a degree of mobility results in the coarsening of small pores. Our results also highlight the influence of the composition of sputtering gas and tilt angles (for oblique angle deposition) on the formation of open and/or occluded porosity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Substrate on Structural and Electrical Properties of Cu3N Thin Film by DC Reactive Magnetron Sputtering

The aim of this paper is to study the effect of substrate on the Cu3N thin films. At first Cu3N thin films are prepared using DC magnetron sputtering system. Then structural properties, surface roughness, and electrical resistance are studied using X-ray diffraction (XRD), the atomic force microscope (AFM) and four-point probe techniques respectively. Finally, the results are investigated and c...

متن کامل

The tribological properties of Cu-Ni3Al-MoS2 composite coating deposited by magnetron sputtering

In industrial applications, most materials are exposed to wear and friction because multiple conditions are used. However, the tribological properties of these materials can be improved with different techniques. One such technique that improves the frictional property of a surface is the use of self-lubricating coatings. In this study, multicomponent coatings of nominal composition Cu-Ni3Al-Mo...

متن کامل

Decorative Titanium Nitride Colored Coatings on Bell-Metal by Reactive Cylindrical Magnetron Sputtering

The transition metal nitrides like titanium nitride exhibit very interesting color variation properties depending on the different plasma deposition conditions using cylindrical magnetron sputtering method. It is found in this deposition study that nitrogen partial pressure in the reactive gas discharge environment plays a significant role on the color variation of the film coatings on bell-met...

متن کامل

Effect of Substrate Bias Voltage and Ti Doping on the Tribological Properties of DC Magnetron Sputtered MoSx Coatings‌

Molybdenum disulfide (MoS2) is one of the most widely used solid lubricants. In this work, composite MoSx/Ti coatings were deposited by direct-current magnetron sputter ion plating onto plain carbon steel substrates. The MoSx/Ti ratio in the coatings was controlled by sputtering the composite targets. The composition, microstructure, and mechanical properties of the coatings were explored using...

متن کامل

Formation of Cupric Oxide Films on Quartz Substrates by Annealing the Copper Films

In the present work, cupric oxide (CuO) films were obtained through thermal annealing of the copper (Cu) films deposited on quartz substrates by DC magnetron sputtering method. The annealing was performed in air atmosphere for different times ranging from 60-240 min at temperature of 400 ºC. The influence of annealing times on structural and morphological properties of the films was investi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanotechnology

دوره 25 35  شماره 

صفحات  -

تاریخ انتشار 2014